Java并发编程:线程池的使用

为什么要使用线程池?

在平时开发中我们经常会使用到并发编程,我们可以一个一个的创建线程,也可以使用线程池创建。
如果我们所需要执行的任务量很小,我们可以一个个创建线程。
假设现在任务量巨大,你不能再使用单个创建线程了吧,所以就引出了线程池的使用。
线程池所创建的线程在执行完任务时,它不会被销毁,而是会继续去执行其他任务。

线程池的优点:

  1. 降低消耗资源:通过重复利用已创建的线程降低线程的创建和销毁造成的消耗。
  2. 提高响应速度:当任务到达时,可以不需要等待线程创建就能执行。
  3. 提高线程的可管理性:线程时稀缺资源,如果无限制的创建,不仅会消耗资源,还会降低系统的稳定性,使用线程池统一分配,监控和调优。

Executor框架

Executor框架不仅包括了线程池的管理,还提供了线程工厂、队列以及拒绝策略等,让并发编程变得更加简单。
Executor是一个接口它只实现了一个execute方法。
在这里插入图片描述
ExecutorService接口继承于Executor。
在这里插入图片描述
抽象类AbstractExecutorService实现了ExecutorService接口。
在这里插入图片描述
ThreadPoolExcutor继承于抽象类AbstractExecutorService。
在这里插入图片描述
到这里,大家应该明白了ThreadPoolExecutor、AbstractExecutorService、ExecutorService和Executor几个之间的关系了。

ThreadPoolExecutor类

java.uitl.concurrent.ThreadPoolExecutor类是线程池中最核心的一个类,因此如果要透彻地了解Java中的线程池,必须先了解这个类。
该类中总共提供了四个构造方法:

public class ThreadPoolExecutor extends AbstractExecutorService {
    .....
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue<Runnable> workQueue);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
            BlockingQueue<Runnable> workQueue,RejectedExecutionHandler handler);
 
    public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,
        BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler);
    ...
}

corePoolSize:核心池的大小。
maximumPoolSize:线程池最大线程数,这个参数也是一个非常重要的参数,它表示在线程池中最多能创建多少个线程。
keepAliveTime:表示线程没有任务执行时最多保持多久时间会终止。

默认情况下,只有当线程池中的线程数大于corePoolSize时,keepAliveTime才会起作用,直到线程池中的线程数不大于corePoolSize,即当线程池中的线程数大于corePoolSize时,如果一个线程空闲的时间达到keepAliveTime,则会终止,直到线程池中的线程数不超过corePoolSize。但是如果调用了allowCoreThreadTimeOut(boolean)方法,在线程池中的线程数不大于corePoolSize时,keepAliveTime参数也会起作用,直到线程池中的线程数为0;

unit:指的是keepAliveTime的单位。
workQueue:一个阻塞队列,用来存储等待执行的任务,这个参数的选择也很重要,会对线程池的运行过程产生重大影响,一般来说,这里的阻塞队列有以下几种选择:
ArrayBlockingQueue和PriorityBlockingQueue使用较少,一般使用LinkedBlockingQueue和Synchronous。线程池的排队策略与BlockingQueue有关。
threadFactory:线程工厂,主要用来创建线程。
handler:表示当拒绝处理任务时的策略,有以下四种取值:

ThreadPoolExecutor.AbortPolicy:丢弃任务并抛出RejectedExecutionException异常。
ThreadPoolExecutor.DiscardPolicy:也是丢弃任务,但是不抛出异常。
ThreadPoolExecutor.DiscardOldestPolicy:丢弃队列最前面的任务,然后重新尝试执行任务(重复此过程)
ThreadPoolExecutor.CallerRunsPolicy:由调用线程处理该任务

对于corePoolSize有个简单的例子:

假如有一个工厂,工厂里面有10个工人,每个工人同时只能做一件任务。

因此只要当10个工人中有工人是空闲的,来了任务就分配给空闲的工人做;

当10个工人都有任务在做时,如果还来了任务,就把任务进行排队等待;

如果说新任务数目增长的速度远远大于工人做任务的速度,那么此时工厂主管可能会想补救措施,比如重新招4个临时工人进来;

然后就将任务也分配给这4个临时工人做;

如果说着14个工人做任务的速度还是不够,此时工厂主管可能就要考虑不再接收新的任务或者抛弃前面的一些任务了。

当这14个工人当中有人空闲时,而新任务增长的速度又比较缓慢,工厂主管可能就考虑辞掉4个临时工了,只保持原来的10个工人,毕竟请额外的工人是要花钱的。
  
  这个例子中的corePoolSize就是10,而maximumPoolSize就是14(10+4)。

线程池的使用举例

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.ThreadPoolExecutor;

class Number1 implements Runnable{

    @Override
    public void run() {
        for(int i = 100; i > 0; i--){
            if(i % 2 == 0){
                System.out.println("当前线程"+Thread.currentThread().getName()+"->"+i);
            }
        }
    }
}
class Number2 implements Runnable{

    @Override
    public void run() {
        for(int i = 100; i > 0; i--){
            if(i % 2 != 0){
                System.out.println("当前线程"+Thread.currentThread().getName()+"->"+i);
            }
        }
    }
}
public class ExecutorTest {
    public static void main(String[] args) {
        //newFixedThreadPool 创建一个定长线程池,可控制线程最大并发数
        ExecutorService s = (ThreadPoolExecutor)Executors.newFixedThreadPool(5);

        Number1 n1 = new Number1();
        s.execute(n1);
        s.execute(new Number2());
        //关闭线程池
        s.shutdown();
    }


}

热门文章

暂无图片
编程学习 ·

C语言二分查找详解

二分查找是一种知名度很高的查找算法&#xff0c;在对有序数列进行查找时效率远高于传统的顺序查找。 下面这张动图对比了二者的效率差距。 二分查找的基本思想就是通过把目标数和当前数列的中间数进行比较&#xff0c;从而确定目标数是在中间数的左边还是右边&#xff0c;将查…
暂无图片
编程学习 ·

GMX 命令分类列表

建模和计算操作命令&#xff1a; 1.1 . 创建拓扑与坐标文件 gmx editconf - 编辑模拟盒子以及写入子组(subgroups) gmx protonate - 结构质子化 gmx x2top - 根据坐标生成原始拓扑文件 gmx solvate - 体系溶剂化 gmx insert-molecules - 将分子插入已有空位 gmx genconf - 增加…
暂无图片
编程学习 ·

一文高效回顾研究生课程《数值分析》重点

数值分析这门课的本质就是用离散的已知点去估计整体&#xff0c;就是由黑盒子产生的结果去估计这个黑盒子。在数学里这个黑盒子就是一个函数嘛&#xff0c;这门课会介绍许多方法去利用离散点最大化地逼近这个函数&#xff0c;甚至它的导数、积分&#xff0c;甚至微分方程的解。…
暂无图片
编程学习 ·

在职阿里5年,一个28岁女软测工程师的心声

简单的先说一下&#xff0c;坐标杭州&#xff0c;14届本科毕业&#xff0c;算上年前在阿里巴巴的面试&#xff0c;一共有面试了有6家公司&#xff08;因为不想请假&#xff0c;因此只是每个晚上去其他公司面试&#xff0c;所以面试的公司比较少&#xff09; ​ 编辑切换为居中…
暂无图片
编程学习 ·

字符串左旋c语言

目录 题目&#xff1a; 解题思路&#xff1a; 第一步&#xff1a; 第二步&#xff1a; 第三步&#xff1a; 总代码&#xff1a; 题目&#xff1a; 实现一个函数&#xff0c;可以左旋字符串中的k个字符。 例如&#xff1a; ABCD左旋一个字符得到BCDA ABCD左旋两个字符…
暂无图片
编程学习 ·

设计模式--观察者模式笔记

模式的定义与特点 观察者&#xff08;Observer&#xff09;模式的定义&#xff1a;指多个对象间存在一对多的依赖关系&#xff0c;当一个对象的状态发生改变时&#xff0c;所有依赖于它的对象都得到通知并被自动更新。这种模式有时又称作发布-订阅模式、模型-视图模式&#xf…
暂无图片
编程学习 ·

睡觉突然身体动不了,什么是睡眠痽痪症

很多朋友可能有这样的体验&#xff0c;睡觉过程中突然意识清醒&#xff0c;身体却动弹不了。这时候感觉非常恐怖&#xff0c;希望旁边有一个人推自己一下。阳光以前也经常会碰到这样的情况&#xff0c;一年有一百多次&#xff0c;那时候很害怕晚上到来&#xff0c;睡觉了就会出…
暂无图片
编程学习 ·

深入理解C++智能指针——浅析MSVC源码

文章目录unique_ptrshared_ptr 与 weak_ptrstd::bad_weak_ptr 异常std::enable_shared_from_thisunique_ptr unique_ptr 是一个只移型别&#xff08;move-only type&#xff0c;只移型别还有std::mutex等&#xff09;。 结合一下工厂模式&#xff0c;看看其基本用法&#xff…
暂无图片
编程学习 ·

@TableField(exist = false)

TableField(exist false) //申明此字段不在数据库存在&#xff0c;但代码中需要用到它&#xff0c;通知Mybatis-plus在做写库操作是忽略它。,.
暂无图片
编程学习 ·

Java Web day15

第十二章文件上传和下载 一、如何实现文件上传 要实现Web开发中的文件上传功能&#xff0c;通常需要完成两步操作&#xff1a;一.是在Web页面中添加上传输入项&#xff1b;二是在Servlet中读取上传文件的数据&#xff0c;并保存到本地硬盘中。 需要使用一个Apache组织提供一个…
暂无图片
编程学习 ·

【51nod 2478】【单调栈】【前缀和】小b接水

小b接水题目解题思路Code51nod 2478 小b接水 题目 输入样例 12 0 1 0 2 1 0 1 3 2 1 2 1输出样例 6解题思路 可以发现最后能拦住水的都是向两边递减高度&#xff08;&#xff1f;&#xff09; 不管两个高积木之间的的积木是怎样乱七八糟的高度&#xff0c;最后能用来装水的…
暂无图片
编程学习 ·

花了大半天写了一个UVC扩展单元调试工具

基于DIRECTSHOW 实现的&#xff0c;用的是MFC VS2019. 详见&#xff1a;http://www.usbzh.com/article/detail-761.html 获取方法 加QQ群:952873936&#xff0c;然后在群文件\USB调试工具&测试软件\UVCXU-V1.0(UVC扩展单元调试工具-USB中文网官方版).exe USB中文网 USB中文…
暂无图片
编程学习 ·

贪心(一):区间问题、Huffman树

区间问题 例题一&#xff1a;区间选点 给定 N 个闭区间 [ai,bi]请你在数轴上选择尽量少的点&#xff0c;使得每个区间内至少包含一个选出的点。 输出选择的点的最小数量。 位于区间端点上的点也算作区间内。 输入格式 第一行包含整数 N&#xff0c;表示区间数。 接下来 …
暂无图片
编程学习 ·

C语言练习实例——费氏数列

目录 题目 解法 输出结果 题目 Fibonacci为1200年代的欧洲数学家&#xff0c;在他的着作中曾经提到&#xff1a;「若有一只免子每个月生一只小免子&#xff0c;一个月后小免子也开始生产。起初只有一只免子&#xff0c;一个月后就有两只免子&#xff0c;二个月后有三只免子…
暂无图片
编程学习 ·

Android开发(2): Android 资源

个人笔记整理 Android 资源 Android中的资源&#xff0c;一般分为两类&#xff1a; 系统内置资源&#xff1a;Android SDK中所提供的已经定义好的资源&#xff0c;用户可以直接拿来使用。 用户自定义资源&#xff1a;用户自己定义或引入的&#xff0c;只适用于当前应用的资源…
暂无图片
编程学习 ·

零基础如何在短时间内拿到算法offer

​算法工程师是利用算法处理事物的职业 算法&#xff08;Algorithm&#xff09;是一系列解决问题的清晰指令&#xff0c;也就是说&#xff0c;能够对一定规范的输入&#xff0c;在有限时间内获得所要求的输出。 如果一个算法有缺陷&#xff0c;或不适合于某个问题&#xff0c;执…
暂无图片
编程学习 ·

人工智能:知识图谱实战总结

人工智能python&#xff0c;NLP&#xff0c;知识图谱&#xff0c;机器学习&#xff0c;深度学习人工智能&#xff1a;知识图谱实战前言一、实体建模工具Protegepython&#xff0c;NLP&#xff0c;知识图谱&#xff0c;机器学习&#xff0c;深度学习 人工智能&#xff1a;知识图…
暂无图片
编程学习 ·

【无标题】

这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题&#xff0c;有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注…