字节Java高工面试:被裁半年考入编制内月薪6K,附面试题答案

前言

本份文档内容涵盖: Java、MyBatis、ZooKeeper、Dubbo、Elasticsearch、Memcached、Redis、MySQL、 Spring、Spring Boot、Spring Cloud、RabbitMQ、Kafka、Linux等技术栈,共1000多道面试题。

三面美团、四面阿里成功斩下offer,全靠P8大佬的这份Java面经

由于文档内容过多,所以只列举了以下目录部分,每个知识点都有更细化的内容!

4步套路,解决动态规划问题

1、确定问题状态

  • 提炼最后一步
  • 的问题转化

2、转移方程,把问题方程化
3、按照实际逻辑设置初始条件和边界情况
4、确定计算顺序并求解

结合实例感受下:

你有三种硬币,分别面值2元,5元和7元,每种硬币都有足够多。买一本书需要27元。如何用最少的硬币组合正好付清,不需要对方找钱?

关键词“用最小的硬币组合正好付清”——“最小的组合”,求最值问题,动态规划

**正常人第一反应思路:**最少硬币组合?优先使用大面值硬币——7+7+7+5=26 额?可求解目标是27啊……改算法——7+7+7+2+2+2=27,总共用了6枚硬币正好27元.实际正确答案:7+5+5+5+5=27,才用了5枚硬币。所以这里贪心算法是不正确的。

套路用起来:

第一步,确定问题状态。

动态规划问题求解需要先开一个数组,并确定数组的每个元素f[i]代表什么,就是确定这个问题的状态。类似于解数学题中,设定X,Y,Z代表什么。

A、确定状态首先提取【最后一步】

最优策略必定是K枚硬币a1, a2,…, aK 面值加起来是27。

找出不影响最优策略的最后一个独立角色,这道问题中,那枚最后的硬币“aK”就是最后一步。把aK提取出来,硬币aK之前的所有硬币面值加总是27- aK因为总体求最硬币数量最小策略,所以拼出27- aK 的硬币数也一定最少(重要设定)。

B、**转化子问题。**最后一步aK提出来之后,我们只要求出“最少用多少枚硬币可以拼出27- aK”就可以了。

这种与原问题内核一致,但是规模变小的问题,叫做子问题。

为简化定义,我们设状态f(X)=最少用多少枚硬币拼出总面值X。我们目前还不知道最后的硬币aK面额多少,但它的面额一定只可能是2/5/7之一。如果aK是2,f(27)应该是f(27-2) + 1 (加上最后这一枚面值2的硬币)如果aK是5,f(27)应该是f(27-5) + 1 (加上最后这一枚面值5的硬币)如果aK是7,f(27)应该是f(27-7) + 1 (加上最后这一枚面值7的硬币)除此以外,没有其他的可能了。

至此,通过找到原问题最后一步,并将其转化为子问题。为求面值总额27的最小的硬币组合数的状态就形成了,用以下函数表示:

f(27) = min{f(27-2)+1, f(27-5)+1, f(27-7)+1}

第二步,转移方程,把问题方程化。

f[X] = min{f[X-2]+1, f[X-5]+1, f[X-7]+1}(动态规划都是要开数组,所以这里改用方括号表示)

实际面试中求解动态规划类问题,正确列出转移方程正确基本上就解决一半了。

但是请问:这与递归有什么不同??

递归的解法:

// f(X)返回最少用多少枚硬币拼出Xint f(int X) {// 0元钱只要0枚硬币if (X == 0) return 0;// 初始化用无穷大(为什么是正无穷?)int res = MAX_VALUE;// 最后一枚硬币是2元if (X >= 2) {res = Math.min(f(X – 2) + 1, res);}// 最后一枚硬币是5元if (X >= 5) {res = Math.min(f(X – 5) + 1, res);}// 最后一枚硬币是7元if (X >= 7) {res = Math.min(f(X – 7) + 1, res);}return res;}

执行图如下:

要算f(27),就要递归f(25)、f(22)、f(20),然后下边依次递归……(三角形表示)。

问题明显——重复递归太多。

这是求f(27),还可以勉强递归。如果求f(100)呢?简直是天文数字。最终结果就是递归超市。

求总体最值,一定优先考虑动态规划不要憨憨的去递归。

插入一下~

需要掌握的动态规划面试解题技巧还包括坐标型、位操型、序列型、博弈型、背包型、双序列以及一些高难面试题解。

本文篇幅有限无法逐一讲清,大家来白嫖我的在线分享吧(纯干货)。

第三步,按照实际逻辑设置边界情况和初始条件。

**【必做】**否则即使转移方程正确也大概率无法跑通代码。

f[X] = min{f[X-2]+1, f[X-5]+1, f[X-7]+1}的边界情况是[x-2]/[x-5]/[x-7]不能小于0(硬币面值为正),也不能高于27。

故对边界情况设定如下:

如果硬币面值不能组合出Y,就定义f[Y]=正无穷例如f[-1]=f[-2]=…=正无穷;f[1] =min{f[-1]+1, f[-4]+1,f[-6]+1}=正无穷,

**特殊情况:**本题的F[0]对应的情况为F[-2]、F[-5]、F[-7],按照上文的边界情况设定结果是正无穷。

但是实际上F[0]的结果是存在的(即使用0个硬币的情况下),F[0]=0。可是按照我们刚刚的设定,F[0]=F[0-2]+1= F[-2]+1=正无穷。

岂不是矛盾?

这种用转移方程无法计算,但是又实际存在的情况,就必须通过手动定义。

这里手动强制定义初始条件为:F[0]=0.

而从0之后的数值是没矛盾的,比如F[1]= F[1-2]+1= F[-1]+1=正无穷(正无穷加任何数结果还是正无穷);F[2]= F[2-2]+1= F[0]+1=1……

第四步,确定计算顺序并计算求解

那么开始计算时,是从F[1]、F[2]开始呢?还是从F[27]、F[26]开始呢?

判断计算顺序正确与否的原则是:当我们要计算F[X](等式左边,如F[10])的时候,等式右边(f[X-2], f[X-5], f[X-7]等)都是已经得到结果的状态,这个计算顺序就是OK的。

实际就是从小到大的计算方式(偶有例外的情况我们后边再讲)。

例如我们算到F[12]的时候,发现F[11]、F[10]、F[9]都已经算过了,这种算法就是对的;而开始算F[27]的时候,发现F[26]还没有算,这样的顺序就是错的。

很显然这样的情况下写一个FOR循环就够了。

回到这道题,采用动态规划的算法,每一步只尝试三种硬币,一共进行了27步。算法时间复杂度(即需要进行的步数)为27*3。

与递归相比,没有任何重复计算。

**原题练习及实际代码:**这道题是lintcode编号669的Coin Change问题。代码如下:

public int coinChange(int[] A, int M){// A = [2,5,7]// M = 27int[] f = new int[M + 1];int n = A.length; // 硬币的种类// 初始化, 0个硬币f[0] = 0;// f[1], f[2], ... , f[27] = Integer.MAX_VALUEfor (int i = 1; i <= M; i++){f[i] = Integer.MAX_VALUE;}for (int i = 1; i <= M; i++){// 使用第j个硬币 A[j]// f[i] = min{f[i-A[0]]+1, ... , f[i-A[n-1]]+1}for (int j = 0; j < n; ++j){// 如果通过放这个硬币能够达到重量iif (i >= A[j] && f[i - A[j]] != Integer.MAX_VALUE) {// 获得i的重量的硬币数就可能是获得i-A[j]重量硬币数的方案+1// 拿这个方案数量与原本的方案数打擂台,取最小值就行f[i] = Math.min(f[i - A[j]] + 1, f[i]);}}}if (f[M] == Integer.MAX_VALUE){return -1;}return f[M];}

最后总结:

1、这是求最值问题,用动态规划方式求解。2、进入求解过程,先确定问题状态

  • 提炼最后一步
    (最优策略中使用的最后一枚硬币aK)
    -子问题转化 (最少的硬币拼出更小的面值27-aK)
    3、构建转移方程 f[X] = min{f[X-2]+1, f[X-5]+1, f[X-7]+1}
    (求min是因为题目要求求最小)
    4、设置初始条件和边界情况 f[0] = 0, 如果不能拼出Y,f[Y]=正无穷
    5、确定计算顺序并计算求解
    f[0], f[1], f[2]……

实际上按照以上4步套路,基本上可以应对绝对大多数的动态规划面试题。

总结

三个工作日收到了offer,头条面试体验还是很棒的,这次的头条面试好像每面技术都问了我算法,然后就是中间件、MySQL、Redis、Kafka、网络等等。

如果你对下面我说的这些笔记感兴趣,可以点赞+关注后,戳这里即可免费领取

  • 第一个是算法

关于算法,我觉得最好的是刷题,作死的刷的,多做多练习,加上自己的理解,还是比较容易拿下的。

而且,我貌似是将《算法刷题LeetCode中文版》、《算法的乐趣》大概都过了一遍,尤其是这本

《算法刷题LeetCode中文版》总共有15个章节:编程技巧、线性表、字符串、栈和队列、树、排序、查找、暴力枚举法、广度优先搜索、深度优先搜索、分治法、贪心法、动态规划、图、细节实现题

最新出炉,头条三面技术四面HR,看我如何一步一步攻克面试官?

《算法的乐趣》共有23个章节:

最新出炉,头条三面技术四面HR,看我如何一步一步攻克面试官?

最新出炉,头条三面技术四面HR,看我如何一步一步攻克面试官?

  • 第二个是Redis、MySQL、kafka(给大家看下我都有哪些复习笔记)

基本上都是面试真题解析、笔记和学习大纲图,感觉复习也就需要这些吧(个人意见)

最新出炉,头条三面技术四面HR,看我如何一步一步攻克面试官?

  • 第三个是网络(给大家看一本我之前得到的《JAVA核心知识整理》包括30个章节分类,这本283页的JAVA核心知识整理还是很不错的,一次性总结了30个分享的大知识点)

基本上都是面试真题解析、笔记和学习大纲图,感觉复习也就需要这些吧(个人意见)

[外链图片转存中…(img-UYeRySq8-1620364093988)]

  • 第三个是网络(给大家看一本我之前得到的《JAVA核心知识整理》包括30个章节分类,这本283页的JAVA核心知识整理还是很不错的,一次性总结了30个分享的大知识点)

最新出炉,头条三面技术四面HR,看我如何一步一步攻克面试官?

热门文章

暂无图片
编程学习 ·

C语言二分查找详解

二分查找是一种知名度很高的查找算法&#xff0c;在对有序数列进行查找时效率远高于传统的顺序查找。 下面这张动图对比了二者的效率差距。 二分查找的基本思想就是通过把目标数和当前数列的中间数进行比较&#xff0c;从而确定目标数是在中间数的左边还是右边&#xff0c;将查…
暂无图片
编程学习 ·

GMX 命令分类列表

建模和计算操作命令&#xff1a; 1.1 . 创建拓扑与坐标文件 gmx editconf - 编辑模拟盒子以及写入子组(subgroups) gmx protonate - 结构质子化 gmx x2top - 根据坐标生成原始拓扑文件 gmx solvate - 体系溶剂化 gmx insert-molecules - 将分子插入已有空位 gmx genconf - 增加…
暂无图片
编程学习 ·

一文高效回顾研究生课程《数值分析》重点

数值分析这门课的本质就是用离散的已知点去估计整体&#xff0c;就是由黑盒子产生的结果去估计这个黑盒子。在数学里这个黑盒子就是一个函数嘛&#xff0c;这门课会介绍许多方法去利用离散点最大化地逼近这个函数&#xff0c;甚至它的导数、积分&#xff0c;甚至微分方程的解。…
暂无图片
编程学习 ·

在职阿里5年,一个28岁女软测工程师的心声

简单的先说一下&#xff0c;坐标杭州&#xff0c;14届本科毕业&#xff0c;算上年前在阿里巴巴的面试&#xff0c;一共有面试了有6家公司&#xff08;因为不想请假&#xff0c;因此只是每个晚上去其他公司面试&#xff0c;所以面试的公司比较少&#xff09; ​ 编辑切换为居中…
暂无图片
编程学习 ·

字符串左旋c语言

目录 题目&#xff1a; 解题思路&#xff1a; 第一步&#xff1a; 第二步&#xff1a; 第三步&#xff1a; 总代码&#xff1a; 题目&#xff1a; 实现一个函数&#xff0c;可以左旋字符串中的k个字符。 例如&#xff1a; ABCD左旋一个字符得到BCDA ABCD左旋两个字符…
暂无图片
编程学习 ·

设计模式--观察者模式笔记

模式的定义与特点 观察者&#xff08;Observer&#xff09;模式的定义&#xff1a;指多个对象间存在一对多的依赖关系&#xff0c;当一个对象的状态发生改变时&#xff0c;所有依赖于它的对象都得到通知并被自动更新。这种模式有时又称作发布-订阅模式、模型-视图模式&#xf…
暂无图片
编程学习 ·

睡觉突然身体动不了,什么是睡眠痽痪症

很多朋友可能有这样的体验&#xff0c;睡觉过程中突然意识清醒&#xff0c;身体却动弹不了。这时候感觉非常恐怖&#xff0c;希望旁边有一个人推自己一下。阳光以前也经常会碰到这样的情况&#xff0c;一年有一百多次&#xff0c;那时候很害怕晚上到来&#xff0c;睡觉了就会出…
暂无图片
编程学习 ·

深入理解C++智能指针——浅析MSVC源码

文章目录unique_ptrshared_ptr 与 weak_ptrstd::bad_weak_ptr 异常std::enable_shared_from_thisunique_ptr unique_ptr 是一个只移型别&#xff08;move-only type&#xff0c;只移型别还有std::mutex等&#xff09;。 结合一下工厂模式&#xff0c;看看其基本用法&#xff…
暂无图片
编程学习 ·

@TableField(exist = false)

TableField(exist false) //申明此字段不在数据库存在&#xff0c;但代码中需要用到它&#xff0c;通知Mybatis-plus在做写库操作是忽略它。,.
暂无图片
编程学习 ·

Java Web day15

第十二章文件上传和下载 一、如何实现文件上传 要实现Web开发中的文件上传功能&#xff0c;通常需要完成两步操作&#xff1a;一.是在Web页面中添加上传输入项&#xff1b;二是在Servlet中读取上传文件的数据&#xff0c;并保存到本地硬盘中。 需要使用一个Apache组织提供一个…
暂无图片
编程学习 ·

【51nod 2478】【单调栈】【前缀和】小b接水

小b接水题目解题思路Code51nod 2478 小b接水 题目 输入样例 12 0 1 0 2 1 0 1 3 2 1 2 1输出样例 6解题思路 可以发现最后能拦住水的都是向两边递减高度&#xff08;&#xff1f;&#xff09; 不管两个高积木之间的的积木是怎样乱七八糟的高度&#xff0c;最后能用来装水的…
暂无图片
编程学习 ·

花了大半天写了一个UVC扩展单元调试工具

基于DIRECTSHOW 实现的&#xff0c;用的是MFC VS2019. 详见&#xff1a;http://www.usbzh.com/article/detail-761.html 获取方法 加QQ群:952873936&#xff0c;然后在群文件\USB调试工具&测试软件\UVCXU-V1.0(UVC扩展单元调试工具-USB中文网官方版).exe USB中文网 USB中文…
暂无图片
编程学习 ·

贪心(一):区间问题、Huffman树

区间问题 例题一&#xff1a;区间选点 给定 N 个闭区间 [ai,bi]请你在数轴上选择尽量少的点&#xff0c;使得每个区间内至少包含一个选出的点。 输出选择的点的最小数量。 位于区间端点上的点也算作区间内。 输入格式 第一行包含整数 N&#xff0c;表示区间数。 接下来 …
暂无图片
编程学习 ·

C语言练习实例——费氏数列

目录 题目 解法 输出结果 题目 Fibonacci为1200年代的欧洲数学家&#xff0c;在他的着作中曾经提到&#xff1a;「若有一只免子每个月生一只小免子&#xff0c;一个月后小免子也开始生产。起初只有一只免子&#xff0c;一个月后就有两只免子&#xff0c;二个月后有三只免子…
暂无图片
编程学习 ·

Android开发(2): Android 资源

个人笔记整理 Android 资源 Android中的资源&#xff0c;一般分为两类&#xff1a; 系统内置资源&#xff1a;Android SDK中所提供的已经定义好的资源&#xff0c;用户可以直接拿来使用。 用户自定义资源&#xff1a;用户自己定义或引入的&#xff0c;只适用于当前应用的资源…
暂无图片
编程学习 ·

零基础如何在短时间内拿到算法offer

​算法工程师是利用算法处理事物的职业 算法&#xff08;Algorithm&#xff09;是一系列解决问题的清晰指令&#xff0c;也就是说&#xff0c;能够对一定规范的输入&#xff0c;在有限时间内获得所要求的输出。 如果一个算法有缺陷&#xff0c;或不适合于某个问题&#xff0c;执…
暂无图片
编程学习 ·

人工智能:知识图谱实战总结

人工智能python&#xff0c;NLP&#xff0c;知识图谱&#xff0c;机器学习&#xff0c;深度学习人工智能&#xff1a;知识图谱实战前言一、实体建模工具Protegepython&#xff0c;NLP&#xff0c;知识图谱&#xff0c;机器学习&#xff0c;深度学习 人工智能&#xff1a;知识图…
暂无图片
编程学习 ·

【无标题】

这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题&#xff0c;有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注…